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Abstract

Neural models aiming at generating meaningful and diverse
response is attracting increasing attention over recent years.
For a given post, the conventional encoder-decoder models
tend to learn high-frequency but trivial responses, or are dif-
ficult to determine which speaking styles are suitable to gen-
erate responses. To address this issue, we propose the elastic
responding machine (ERM), which is based on a proposed
encoder-diverter-filter-decoder framework. ERM models the
multiple responding mechanisms to not only generate accept-
able responses for a given post but also improve the diver-
sity of responses. Here, the mechanisms could be regraded as
some latent variables, and for a given post different responses
may be generated by different mechanisms. The experiments
demonstrate the quality and diversity of the generated re-
sponses, intuitively show how the learned model controls re-
sponse mechanism when responding, and reveal some under-
lying relationship between mechanism and language style.

Introduction
Recent years have witnessed the development of conversa-
tional models which aim at the generation of relevant and
fluent responses observing user posts. Since the end-to-end
neural machine automatically learns the transduction from
posts to responses, it is attracting increasing number of stud-
ies for developing task-oriented as well as open-domain con-
versation systems. The vast amount of dialogue texts gener-
ated by social networks provide the data basis for generative
models of conversational models, and these end-to-end solu-
tions are shown to outperform the conventional ones (Shang,
Lu, and Li 2015).

Despite the surging popularity of these end-to-end neu-
ral machines, their performances are still far from perfect.
In real human to human conversations, different language
styles exist. For example, some people compose their speech
with plain declarative statements; some prefer to use nega-
tions; others fill their responses with rhetorical questions.
Unlike real conversations, end-to-end neural models often
generate generic and dull responses, and fail in controlling
the language styles of responses. Current generative conver-
sational models follows the line of encoder-decoder frame-
work for statistic machine translation (SMT). These mod-
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els attempt to “translate” an input post x to a response y
by maximizing the probability of p(y|x). A training objec-
tive of maximum likelihood tends to produce low-diversified
high-frequency responses (Li et al. 2016a). Although beam
search algorithm applied in these models offers capability
of generating multiple probable responses to a given input,
there is no guarantee that these responses are diversified in
terms of language style.

To improve response diversity, models have been pro-
posed including making improvements on the beam search
method (Wiseman and Rush 2016), designing new types of
objective functions for response resorting (Li et al. 2016a),
etc. Specially, Zhou et al. (2017) argues that a machine
translation corpus is inherently different from a conversa-
tion corpus. For translation pairs, there almost always is a
phrase alignment between each pair and there is little vari-
ation among the target translations for a given source sen-
tence. On the other hand, for conversation corpus, aside from
the language style elements mentioned earlier, responses
can be wildly different from one another focusing on var-
ious topics in the input post. Therefore, they proposed a
encoder-diverter-decoder framework MARM which mod-
els these variations as latent mechanism parameters. Here,
mechanism refers to the different underlying transduction
regularities from a post to its corresponding response. With
different learned mechanisms specified, the model is able to
generate responses with various language styles.

In (Zhou et al. 2017), it is assumed that there are a
fixed number of mechanisms for all pairs of posts and re-
sponses. During training, for each input post the model al-
ways calculates the conditional probability p(y|m,x) over
all mechanisms. However, it is possible that not all mecha-
nisms are relevant for a given input post x. This introduces
an inefficiency in computing: the over-all-mechanism train-
ing applies back-propagation for all mechanism parameters
including those that are not related to x. Thus, there is more
room for improvements with respect to time efficiency.

At test time, MARM utilizes top-K mechanisms for each
input post. However, we argue that it is difficult and unre-
liable to manually select the hyper-parameter K, since the
number of suitable mechanisms varies for different input
posts. For example, for posts such as “I have an exam to-
morrow and I am super nervous”, the responses could be
“What exam?”, “Relax, it is quite easy.”, or “You should not



be. That exam is not hard.”. On the other hand, certain posts
only have specific responses, such as “Hello!”, “It was nice
meeting you.”. Their generating mechanisms are less than
the aforementioned ones. It is vital to be able to dynami-
cally determine the number of mechanisms on the fly after
observing the input post.

In this study, we plan to enhance mechanism-aware neu-
ral machine by adding the capability to dynamically se-
lect the number of mechanisms for each individual input
post therefore improving computation efficiency and reduc-
ing mechanism redundancy. We propose elastic responding
machine (ERM) which is able to automatically determine
which mechanisms should be used in the responding phase
for a specific input post. The key idea is to train a model to
learn a large set of mechanisms and only select a suitable
subset of mechanisms for responding a given post. Since
each mechanism often obtains a specific type of language
style or genre, this suggests a more elegant way to control
which language styles will be used when responding. This
could also effectively reduce the computational complexity
for each batch and enable the model to provide the capability
of training a larger set of mechanisms to potentially improve
the performance over limited computing resource (e.g. GPU
memory). As it is non-trivial to label the training corpus with
mechanism information, we train the model using only the
post-response pairs. To this end, our contribution is summa-
rized into three folds:

1) We propose a encoder-diverter-filter-decoder frame-
work, in which the suitable mechanism set is selected to
generate diverse responses while the mechanism redundancy
could be minimized. 2) We empirically demonstrate that the
proposed method generates more diverse and acceptable re-
sponses than baseline methods. Specifically, since ERM may
select suitable mechanisms from a large set of mechanisms,
it achieves a 7.00% increase of acceptance ratio and 7.41%
increase of diversity-F1. 3) We investigate the diversity dis-
tribution of the corpus, and explore the relationship between
language style and mechanism.

Preliminaries
Encoder-Decoder
Given a post x = (x1, x2, · · · , xT ) and a response y =
(y1, y2, · · · , yT ′), where xt and yt are the t-th word in post
and response respectively. The encoder-decoder model (Cho
et al. 2014; Sutskever, Vinyals, and Le 2014) aims to learn
p(y|x) based on the training corpus D = {(x,y)} contain-
ing post-response pairs.

In detail, the conventional encoder-decoder model firstly
uses encoder module to summarize the post as a fixed-length
vector representation, namely context vector c. Then it feeds
c to a decoder for generating responses. Here, both encoder
and decoder are recurrent neural networks. For encoder, it
receives the previous hidden state ht−1 and current word
embedding xt, and calculate ht = f(ht−1,xt), where f is
the activation function, e.g. LSTM (Hochreiter and Schmid-
huber 1997), GRU (Cho et al. 2014) etc. At last, the encoder
output the last hidden state hT as c, representing the sum-
marization of the post. Similar to the encoder, the decoder

also recurrently generate the hidden states st. Additionally,
the decoder feeds every st to a softmax layer to estimate the
word probability p(yt|y<t,x).

Encoder-Diverter-Decoder
In consideration of 1-to-n relationships between a post
to its diverse responses, the encoder-diverter-decoder
model (Zhou et al. 2017) is proposed to model different re-
sponding mechanisms. This model assumes that there areM
latent mechanisms {m}Mi=1 for response generation. Thus,
the p(y|x) can be decomposed as

p(y|x) =
M∑
i=1

p(mi|x)p(y|mi,x) (1)

where p(mi|x) measures the degree thatmi can respond the
post x, and p(y|mi,x) measures the probability that the re-
sponse y is generated by the mechanism mi and post x. In
detail, as conventional encoder-decoder model, its encoder
firstly summarizes the post as a fixed-length vector c. Then,
a diverter, which is a softmax classifier, receives c as input,
and output the probability p(mi|x). Here, it is calculated
as p(mi|x) = softmax(mi · c + bi) where mi is mecha-
nism embedding. p(mi|x) will be further used for mecha-
nism selecting. To generate a response, for a given mi and
x, the decoder receives a mechanism-aware context vector
c̃i = [mi; c] which is the concatenation of mechanism em-
bedding mi and context vector c. For a given c̃i, the decoder
updates the hidden state st = f(st−1, yt−1, c̃i), and uses st
to estimate the word probability p(yt|y<t,x).

In Equ.(1), p(m|x) represents the probability of the
mechanism m conditioned on x. This probability actually
measures the degree that m can generate the response for x.
The larger of this value is, the more likely that the mecha-
nism mi can be used to respond x.

Elastic-mechanism Responding Machine
Following the line of mechanism-aware responding ma-
chine, we propose a new framework Elastic Responding
Machine (ERM), which dynamically determines the mecha-
nism used for responding.

The model assumes that in the corpus all mechanisms are
contained in the set S = {mi}Mi=1. Denote an additional ter-
mination mechanism m0 (detailed later). For a given post x,
the model selects a suitable mechanism subset Sx ∈ S and
utilizes Sx to generate x’s response, namely y. The genera-
tive probability of y is modeled as

p
(
y|x
)
=

∑
m∈Sx p(m|x)p(y|m,x)∑

m∈Sx p(m|x)
(2)

where the denominator normalizes the probability sum of
p
(
m ∈ Sx|x

)
to 1.

To model p(y|x), the encoder firstly summarizes the input
post x as the context embedding c. Due to space limitation,
we omit the encoder details. Then the context embedding
c is fed to the diverter to calculate x’s distribution over all
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Figure 1: Structure of encoder-diverter-filter-decoder model.

mechanisms. Specially, for all mechanisms p(mi|x) can be
modeled as follows,

p(mi|x) =
exp g(mi, c)∑M
j=0 exp g(mj , c)

, i = 0, 1, · · · ,M (3)

where g can be any nonlinear, potentially multi-layered
function and mi represents the embedding of the i-th mech-
anism. {mi}Mi=0 are trained as model parameters.

Mechanism Selecting
We now move to discuss how to select a suitable mechanism
set Sx to generate responses. With calculated p(mi|x), we
then develop a filter component aiming at selecting which
mechanisms can be used for response generation.

Here, a filter component is developed to receive the mech-
anism probability p(m|x), and select suitable mechanisms
for responding x in a sequential fashion(Fig.1), and we train
the filter via reinforcement algorithm. Formally, with mech-
anism probability p(mi|x) the filter selects a mechanism set
Sx ∈ S . Note that an ideal Sx should satisfy: 1) Sx include
enough mechanisms for x. Hence, the diversity of gener-
ated responses will be high. 2) The mechanisms in Sx are
not highly overlapped or redundant. In other words, for each
mechanism its generated response is different from other
mechanisms.

Now we introduce how the filter selects Sx ∈ S . The
filter sorts the mechanisms in descending order of p(mi|x)
(denoted as mi1 ,mi2 , · · · ,miM ). Then the filter scans the
mechanisms from mi1 to miM , and selects only top-K
mechanisms (mi1 ,mi2 , · · · ,miK ). In detail, the filter com-
posed of the following components:

Action: We define two actions in our model: a termination
action at and continue action ac representing the filter will
terminate or continue selecting.

State: The state S(·)x is the set of selected mechanisms.
Here, let S(k)x ∈ S denote the state at k-th step. S(k)x de-
notes the mechanism set with top-k probability, namely,
S(k)x = {mij}kj=1. Specially, the initial state S(1)x is the set
only containing mi1 which obtains the highest probability
p(mi1 |x).

Algorithm 1 FILTER(x,S)
Input:

Post, x
Total mechanism set, S

Output: Selected mechanisms for input x, Sx
1: Sort the mechanisms m ∈ S in the descending order of
p(mi|x) (denoted as mi1 ,mi2 , · · · ,miM );

2: Set S(0)
x ← φ;

3: for k ← 1 to |S| do
4: S(k)

x ← S(k−1)
x + {mik};

5: Sample a ∼ π(·|S(k)
x );

6: if a = at then
7: break;
8: end if
9: end for

10: K ← k; Sx ← S(K)
x ;

11: return Sx;

Policy: Given the current state, the filter determines
whether the selecting process should be terminated. If ter-
minated, the filter will output current selected mechanisms.
Here, given the state S(k)x , the two actions (ac and at) are
taken by a stochastic policy π(·|S(k)x ). To obtain π(·|S(k)x ),
we firstly define them0 as the termination mechanism. Then
we define:

π(at|S(k)x ) =
p(m0|x)

1−
∑
m∈S(k)

x
p(m|x)

π(ac|S(k)x ) = 1− π(at|S(k)x )

(4)

Here, π(at|S(k)x ) is defined as the ratio of the probability of
termination mechanism m0 with respect to the sum proba-
bility of unselected mechanisms. Hence, the filter tends to
continue selecting if: 1) the number of unselected mech-
anism is still “large”; 2) there are unselected mechanisms
with high probabilities p(m|x).

Reward: Let K denote the time step when the termina-
tion mechanism is triggered. Since the generative probabil-
ity p

(
y|x;S(K)

x

)
can only be calculated after the termination

is triggered, the reward can only be received at the termina-
tion step. We then set the log likelihood log p

(
y|x;S(K)

x

)
as

the reward of actions. The filter, meanwhile, outputs S(K)
x as

Sx. Hence, the rewards ri(i = 1, 2, · · · ,K) are defined as:

rK=log p
(
y|x;S(K)

x

)
= log

∑
m∈S(K)

x
p(m|x)p(y|m,x)∑

m∈S(K)
x

p(m|x)
rk=0 (k = 1, 2, · · · ,K − 1)

(5)
For simplicity, we denote rK as r.

Controlled by the policy, ERM will trigger a termination
action at at time step K. Then it feeds the mechanism set
S(K)
x as Sx to the decoder components. Then, each mecha-

nism embedding mi ∈ Sx is concatenated with the context
embedding c as c̃i = [c;mi]. c̃i is the mechanism-aware
context embedding, and is then fed to the decoder to calcu-



late p(y|mi,x) and generate responses with mi:

p(y|mi,x) =

|y|∏
j=1

p(yj |y<j , c̃i) (6)

Here, we apply the decoder in (Cho et al. 2014) to ERM.
Due to the space limitation, we omit the decoder details.

Obviously, for different x the selected Sx may be differ-
ent, and thus the amount of corresponding c̃i may also be
different. The filtering process is detailed in algorithm 1.

Training Details
In this section, we discuss how to train ERM. To train the
model parameters θ, we alternately update the parameters
via maximizing likelihood pθ(y|x;Sx) of all sampled states
and expected reward J(θ) (detailed later).

Firstly, after the filter outputs the mechanism-aware con-
text embeddings, we update the parameters of the decoder
via maximizing likelihood pθ(y|x;Sx) for each mini-batch
B, namely

∑
(x,y)∈B log pθ(y|x;Sx).

Secondly, with the updated model, we obtain the log like-
lihood log pθ(y|x;Sx)as the reward r. The parameters are
then updated again by maximizing the expected reward. Mo-
tivated by REINFORCE algorithm (Williams 1992), the ex-
pected reward for an input post x is defined as J(θ) =
ESx,a∼π[r− b]. Here, b is baseline reward which is the aver-
age of all rewards for each input post. Subtracting b from the
rewards helps to reduce the variance in the updates (Green-
smith, Bartlett, and Baxter 2004). The gradient is therefore
defined as:

∇θJ(θ) = ESx,a∼πθ [∇θlogπθ · (r − b)] (7)

r is the given reward and the gradient does not backpropa-
gate through r when calculating∇θJ(θ). Obviously, the up-
dating policy depends on the reward (likelihood) estimation.
Since the parameters are randomly initialized, at this time
the reward estimation is not accurate. Therefore, we max-
imize the expected reward once every 20 batches to make
sure we could obtain a relatively accurate reward.

Note that theoretically if the post x and the response y
are given, the mechanism of this post-response pair could be
determined. Thus, there should be a dominant mechanism
m whose probability p(m|x,y) is much larger than the oth-
ers’. This will reduce the entropy H(m|x,y). Therefore we
suggest using (r − h) in replace of r where h is a penalized
term :

h = max{λ, H(m|x,y;Sx)
Hmax(m|x,y;Sx)

}, λ ∈ [0, 1] (8)

where Hmax(m|x,y;Sx) = − log 1
|Sx| , and we normalize

the entropy H by the maximal entropy Hmax. With this pe-
nalized term, for a sampled Sx with lower H(m|x,y;Sx),
it obtains higher reward.

Additionally, if the entropy ratio H
Hmax

is lower than λ, the
penalized term will become the constant λ. This prevents
the model overfitting the term. To calculate H(m|x,y),
we firstly get p(m|x,y) = p(y|m,x)p(m|x)

p(y|x) with Equ.(2),

(3) and (6). Then it follows that H(m|x,y;Sx) =
−
∑
m∈Sx p(m|x,y) log p(m|x,y). The initial experi-

ments shows that this track accelerates the coverage, and we
set λ = 0.9 in this study.

Elastic Response Generating
With trained ERM model, we then discuss how to generate
responses given a post x. The main task is to determine Sx
and usem ∈ Sx to respond. To determine Sx, the model first
sorts the mechanisms in descending order by p(mi|x) (de-
noted asmi1 ,mi2 , · · · ,miM ). Consistent with training, only
top-K mechanisms (mi1 ,mi2 , · · · ,miK ) will be selected.
At generation phase, we estimate K as its expectation:

K̂ = E[|Sx|] =
M∑
k=1

k · π(at|S(k)x )

k−1∏
j=1

π(ac|S(j)x ) (9)

where S(k)x and S(j)x contain mechanisms with top-k and
top-j probability p(m|x) respectively. Note that we round
K̂ to an integer when determining Sx. After Sx is deter-
mined, for each mechanism mi ∈ Sx, we generate a re-
sponse yi based on the mechanism-aware context embed-
ding c̃i = [c;mi] via beam search. Here, mi is mechanism
embedding and is trained together with other model param-
eters. Note that we repeat beam search and make sure yi is
different from previously generated responses. Finally, we
set the generated K̂ responses as the final output.

Experiment Process
Dataset Details
We utilize the dataset in (Zhou et al. 2017) for experiments,
which is collected from Tecent Weibo1. In total, there are
815, 852 pairs, among which 775, 852 are for training, and
40, 000 for model validation.

Benchmark Methods
We implemented seven types of conversation models for
comparison:

1. SEQ2SEQ (Sutskever, Vinyals, and Le 2014): The RNN
model that utilizes the last hidden state of the encoder as
the initial hidden state of the decoder;

2. ENCDEC (Cho et al. 2014): The RNN model that feeds
the last hidden state of the encoder to every cell and soft-
max unit of the decoder;

3. ATT (Bahdanau, Cho, and Bengio 2015): The RNN model
based on EncDec with attention signal;

4. NRM (Shang, Lu, and Li 2015): Neural Responding Ma-
chine with both global and local schemes;

5. MMI-bidi and MMI-antiLM (Li et al. 2016a): The RNN
model uses Maximum Mutual Information (MMI) as the
objective function to reorder generated responses. Two
parameters are given: λ = 0.5 and γ = 1;

1http://t.qq.com/?lang=en US



Table 1: The performance of each model. The “Top-k” denotes the responses with top-k probabilities in each group. Specially,
the responses of MARM-25, ERM-25 and ERM-25-All are sorted in descending order by p(m|x).

Models %Acceptable∗ %Bad %Normal %Good BLEU-4 Top-5 Diversity Total DiversityTop-1 Top-2 Top-3 Top-4 Top-5
ENCDEC 31.78 34.17 37.11 38.92 40.47 59.53 35.93 4.53 8.78 0.3074 -
SEQ2SEQ 45.00 48.22 48.56 48.19 48.40 51.60 40.80 7.60 12.45 0.2806 -
ATT 47.89 49.89 51.70 53.00 53.11 46.88 40.40 12.71 13.89 0.2760 -
NRM 53.00 54.39 54.93 55.42 55.20 44.80 45.73 9.47 13.73 0.2434 -
MMI-antiLM 49.00 45.67 44.11 43.50 43.60 56.40 36.53 7.07 8.56 0.2147 -
MMI-bidi 58.67 58.33 55.89 54.67 54.60 45.40 45.07 9.53 4.41 0.3060 -
MARM-4 65.00 66.83 65.44 64.58 64.60 35.40 41.00 23.60 11.56 0.5033 -
MARM-25 58.67 54.83 53.56 53.00 51.93 48.07 28.40 23.53 5.87 0.4280 0.2942
ERM-25 70.67 72.83 71.78 71.75 71.60 29.85 44.76 25.39 12.23 0.5493 0.5308
ERM-25-All 70.67 72.83 71.78 71.75 71.60 51.24 31.12 17.64 7.49 0.5493 0.3073

6. MARM-4 and MARM-25 (Zhou et al. 2017): The RNN
model uses multiple mechanisms to improve the genera-
tion quality and diversity. Here, MARM-4 utilizes the de-
fault setting: 4 mechanisms for training and mechanisms
with top-2 p(m|x) for responding. MARM-25 uses 25
mechanisms for training and all the mechanisms for re-
sponding (every mechanism generates one response);

7. ERM-25 and ERM-25-All: ERM model reported in this
paper with 25 mechanisms for training. The only dif-
ference between ERM-25 and ERM-25-All is: ERM-25
use the elastic generating method proposed in the section
Elastic Response Generating, while ERM-25-All uses all
the mechanisms for responding (each mechanism gener-
ates one response).

Implementation Details
We use a vocabulary of 28,000 Chinese words in coarse-
grained segmentation. This vocabulary covers 98.26% of the
words in the training corpus. The out-of-vocabulary words
are replaced with a special token “UNK”.

We implement models using Theano (Theano Develop-
ment Team 2016). For all the models, the dimension of
the word embedding is 128, the dimension of hidden state
is 1024, and one-layer RNN with GRU (Cho et al. 2014)
activation function is utilized. For initialization, parame-
ters are sampled from a uniform distribution between -
0.01 and 0.01. For training, ADADELTA (Zeiler 2012;
Graves 2013) is used for optimization. We stop training af-
ter the error over the validation set does not decrease for
7 consecutive epochs. For each model, the parameters with
the largest likelihood on validation set are selected for fi-
nal comparison. For generating responses, beam search with
beam size 200 is applied.

Human Judgment
Due to the high diversity of responses in real-world corpus,
it is non-trivial to construct a dataset covering all responses
for each post. Hence, we employ human judges in our ex-
periments. In detail, 3 labelers were invited to evaluate the
quality of responses to 300 randomly sampled posts.

For each post, 1) ENCDEC, SEQ2SEQ, ATT, NRM, MMI-
antiLM, MMI-bidi and MARM-4 generate top-5 different

responses; 2) MARM-25 and ERM-25-All generate 25 dif-
ferent responses (every mechanism generates one response);
3) ERM-25 dynamic selects the generating mechanisms via
the method in the section Elastic Response Generating. For
fair comparison, we merge all the model responses in a sin-
gle file, and shuffle the file to prevent the labelers from
knowing which model a response is generated by.

Similar to (Zhou et al. 2017), for each response the label-
ers determine the quality to be one of the following three
levels:
• Bad: The response is ungrammatical and irrelevant.
• Normal: The response is basically grammatical and rele-

vant to the input post but trivial and dull, e.g. “Yes” “No”
“I don’t know”.

• Good: The response is not only grammatical and relevant
to the input post, but also meaningful and informative.
The response on Normal and Good level is “Acceptable”.

From labeling results, average percentages of responses in
different levels are calculated. Additionally, to evaluate the
diversity of the responses, for each post the labelers anno-
tate the number of different meanings among the acceptable
responses, namely n. Let K denote the number of responses
generated by a given model. The diversity score is defined as
n
K . We define the model’s diversity score as the average di-
versity scores of its posts. We also report the diversity score
derived from top-5 responses of each model, namely Top-5
diversity.

To this end, labeling agreement is evaluated by Fleiss’
kappa (Fleiss 1971) which is a measure of inter-rater con-
sistency. In this experiment, kappa value κ = 0.66 (substan-
tial agreement). Furthermore, we report BLEU-4 (Papineni
et al. 2002) scores (percentage) for these 300 posts, which is
conventionally applied in translation tasks. Since some re-
searchers indicate that BLEU may not be a good measure
for dialog evaluation(Liu et al. 2016), we consider human
judgment as the major measurement in the experiments.

Experimental Results and Analysis
Experimental Results
We summarize the experimental results in Table 1.

Since all the models generate at least 5 responses, we
firstly observe the Top-5 Acceptable and diversity score. The
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Figure 2: Comparisons between MARM-25, ERM-25 and ERM-25-All.

best baseline method MARM-4 achieves 64.60% Top-5 Ac-
ceptable ratio, while ERM-25 reaches 71.60% with an in-
crease percentage of 10.84%. We observe that this improve-
ment is mainly from more Normal responses are generated
(41.00% vs. 46.53%), indicating that some irrelevant and
ungrammatical responses are repaired to Normal in ERM.
Additionally, MARM-4 achieves 50.38% Top-5 diversity,
while ERM-25 reaches 54.93% with an increase percentage
of 9.05%, indicating that these repaired responses might ob-
tain different meanings from the others. Here, since ERM-
25 and ERM-25-All share the Top-5 responses, they obtain
the same Top-5 Acceptable and Diversity scores. We notice
that ERM-25-All obtains unsatisfactory Normal and Good
scores. The reason we conjecture is that we force the model
to use all 25 mechanisms to generate 25 responses, instead
of selecting a suitable mechanism subset to generate. We ex-
perimentally discover that mechanisms with lower p(m|x)
often generates lower-quality responses. These responses re-
duces the Acceptable, Normal and Good scores.

It is interesting to find the Acceptable score of MARM-
25 is not satisfactory. While its Good score is close to
MARM-4, the Top-5 acceptable (51.93%) and Normal score
(28.40%) is not competitive. We conjecture that if the mech-
anism number is set to be large while the filter module is
not applied to fine-select the responding mechanisms, the
model may overfit the corpus. In other words, in these set-
tings MARM might be learning some noise.

Furthermore, to empirically demonstrate that ERM’s elas-
tic generation method (discussed in the section Elastic Re-
sponse Generating) outperforms the one proposed in (Zhou
et al. 2017), which utilizes fixed-number mechanisms for re-
sponding every post, we calculate Acceptable rate and Di-
versity for ERM-25-All and MARM-25 which uses mecha-
nisms of Top-1, Top-2, · · · , Top-25 probability p(m|x) , and
compare them to the score of ERM-25.

Motivated by the F1 score used in Information Retrieval
field, we define the Diversity-Precision P , Diversity-Recall
R and Diversity-F1 scores for measuring the quality of
a generated response. For the i-th testing post, we firstly
merge the responses by MARM-25, ERM-25 and ERM-25-
All together. Then for these merged responses, the label-
ers annotate the number of different meanings in the ac-
ceptable responses, namely Ni. After this, for each model
we independently collect the statistics of how many differ-
ent meanings are in its acceptable responses, namely ni.

If a model generates Ki responses, we define Diversity-
Precision P = 1

L

∑L
i=1

ni
Ki

(same as the aforementioned

diversity score), Diversity-Recall R = 1
L

∑L
i=1

ni
Ni

and
Diversity-F1 F1 = 2PR

P+R where L is the number of test-
ing posts. Hence, if one model generates more relevant and
grammatical responses but also more diverse responses, the
Diversity-F1 becomes higher. We believe that a higher F1

score indicates that the model can better balance the accept-
able and diversity performance.

Observed from Fig.2(a) and Fig.2(b), the red dashed line
is the score of ERM-25. For Acceptable ratio, ERM-25 out-
performs other two models, except ERM-25-All from Top-
1 to Top-7. For Diversity-Precision, ERM-25 outperforms
other models except ERM-25-All from Top-1 to Top-7, and
MARM-25 Top-1. We can also find that as the number of
used mechanisms increases, the Acceptable and Diversity-
Precision P decreases. As we discussed before, the mech-
anisms with lower p(m|x) may generate low-quality re-
sponses and reduce the Acceptable score. Similarly, since
the Diversity-Precision is calculated based on the acceptable
response, the Diversity-Precision also decreases.

The observation of Diversity-Recall R is opposite(
Fig.2(c)

)
. The red dashed line is ERM-25. ERM-25 out-

performs other models when mechanisms are restricted to
less or equal to Top-9. Fig.2(c) also shows R increases as
the number of responding mechanisms increases. It indicates
that mechanism with a lower p(m|x) might generate more
distinctive responses.

To summarize, we discover that as the number of re-
sponding mechanisms increases, the diversity recall in-
creases while precision decreases. As Diversity-Precision
and Diversity-Recall might not ideally represent the over-
all performance of a model, we consider Diversity-F1 as the
major measurement. The model with both high Diversity-
Precision and high Diversity-Recall could achieve a rel-
atively high Diversity-F1. Observed from Fig. 2(d), the
Diversity-F1 of ERM-25 is 0.5144. It is slightly more than
the maximal Diversity-F1 of ERM-25-All (0.5064), and
visibly outperforms MARM-25 (0.4403). This experimen-
tally demonstrates that ERM’s elastic generating method is
preferable to always utilizing a fixed-number of mechanisms
to respond posts.



Analysis on Responding Mechanisms
In this section, we investigate the distribution of the num-
ber of responding mechanisms, and explore the relationship
between language styles and mechanisms.

We randomly sample 50,000 posts in the training set. Af-
ter removing the spams and sentences containing “UNK”,
48,876 posts are left. For each post, we use ERM model
to estimate the expected number of responding mechanisms
K̂ = E[|S(x)|] where K̂ is a real number (discussed in sec-
tion Elastic Response Generating). We plot the histogram of
mechanism number K̂ for responding a given post, shown
in Fig.3. Fig.3 shows that most of K̂ are in [7, 12]. In our
experimental corpus, it is interesting to discover: 1) A few
posts with K̂ ∈ [7, 8] are yes-or-no questions, e.g. “Are you
16 years old?”. We believe that the model tends to use less
mechanisms to respond these specific posts. 2) A number of
posts with K̂ ∈ (10, 12] are wh-questions. We conjecture
that this post type usually has more diverse responses than
others. 3) Posts with K̂ ∈ (8, 10] are likely to be common
sentences. For example, “Your mother called you home for
dinner”.
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Figure 3: Histogram of mechanism number K̂ for respond-
ing a given post. The red curve is smoothed.

Additionally, examples in Table 2 show how ERM select
mechanisms and generate relevant and diverse responses.
We find that some mechanisms correlate to specific language
styles. For example, the responses generated by mechanism
1 are usually strong-tone sentences, and mechanism 5 usu-
ally generates questions. As ERM can automatically select
suitable responding mechanism, we believe it might offer a
more elegant way to control the response’s language style or
genre.

Related Work
End-to-end Neural Network. The basic neural-based
encoder-decoder framework for generative models have
been widely used in tasks such as statistical machine trans-
lation (SMT) and conversational models. In SMT, Sutskever

Table 2: The responses from ERM-25 for input examples
Post 我早上工作感觉死死的是怎么回事 听说过外星生命吗 公司有人打架 上班很无聊啊

What's wrong with me when I go to

work this morning? I feel bad.

Do you hear alien life? Somebody come to blows in

company

It is boring to go on duty

Mechanism 1 那你要去医院看看了 当然有啦 那你要去医院看看哦 那就好啊

You shall go to the hospital to check it. Of course. You shall go to the hospital to

check it.

That's good.

Mechanism 2 那你要去医院看看 我是机器人 为什么要骂人呀 你在干嘛呢

You shall go to hospital to check it. I am a robot. Why you curse at other people? What are you doing?

Mechanism 3 你可以去网上查查啊。 主人，快从火星上回来吧 我不明白你要说什么。 那就聊点有意义的事吧。

You could check it through internet. Master, please come back

from the Mars soon.

I don't know what you talk about. Let's talk something

meaningful.

Mechanism 4 你继续把话说完啊。 一直都是浮云 请文明用语 好好上班吧

Go on, tell what you want to tell. Nothing matters. Please use polite language. Work hard.

Mechanism 5 你要去医院么？ 你在说谁呀？ 你为什么要打人？ 你在干嘛

Do you go to the hospital? Who are you talking about? Why you fight with other one? What are you doing?

Mechanism 6 你在干嘛呢呀 当然没有 怎么可能 还可以吧

What are you doing? Of course not. How is it possible? It's ok.

Mechanism 7 你去过什么事情？ 当然有 为什么要打人呀 聊什么啊

What happen? Of course. Why you fight with other one?! What are you chatting about?

Mechanism 8 夸奖 机器人都是浮云 为什么要打人 无聊就来找我聊天啊。

Praise Robot is nothing. Why you fight with other one? You could chat with me if

you feel boring.
Mechanism 9 那你要去医院看看哦 我可没去过 这可不是个好主意哦。 那你在干嘛呢

You shall go to hospital to check it. I have not been to there. It's not a good idea. What are you doing?

et al. (2014) and Cho et al. (2014) used an encoder to sum-
marize the source sentence and a decoder to generate cor-
responding target sentence. Later, Bahdanau et al. (2015)
extended the encoder-decoder framework with the atten-
tion mechanism to improve SMT performance especially for
long sentences. However, the generation diversity problem
is not considered by these models. Wang et al. (2016) us-
ing extra memory cells to enhance SMT performances of
RNN models. Similar to SMT, some studies show the su-
periority of encoder-decoder framework in conversational
models. For example, Shang et al. (2015) developed a neu-
ral responding machine with global and local schemes for
generating short-text conversation.

Recently, researchers began to develop models for
multiple-round conversation. Serban et al. (2015) extend
the short-text conversational models to hierarchical neu-
ral network which has the ability to handle multiple-round
conversations. Meanwhile, Sordoni et al. (2015) applied
a similar hierarchical RNN model for query suggestion.
Li et al. (2016b) proposed a reinforcement dialog gener-
ation model to generate informative, coherent, and easy-
to-answer responses. Note that its reinforcement module is
not designed for controlling the responding mechanisms.
These multiple-round conversations mainly extend the en-
coder from only handling a single post to handling several
context sentences.

Some other models are proposed to tackle response di-
versity problem. Li et al. (2016a) proposed the Maximum
Mutual Information (MMI) as the objective to improve the
diversity. Our experiments show that it decreases the accept-
able ratio. Zhou et al. (Zhou et al. 2017) applied a quanti-
tative study on the diversity problem. They then proposed
MARM to generate diverse responses with different mech-
anisms. However, its mechanism number for responding
needs to be handcrafted and might not be satisfactory for ev-
ery post. Zhao et al. (2017) proposed CAVE and kgCAVE
using conditional variational autoencoders. However, CAVE
may be difficult to explicitly control responding mechanism,
and kgCAVE needs extra feature engineering of discourse
and dialog act during training which limits its applications
in real-world corpus.

Sparse Modeling. For ERM, using only the selected
mechanism to respond is similar to setting the p(m|x) of



unselected mechanism to 0. We argue that this could be
regarded as a sparse operation. Here, some studies focus
on making the probability of latent variable sparse. Zhu et
al. (2011) propose a sparse topic model (STC) for discover-
ing latent representations of large collections of data. Zhang
et al. (2013) proposed the sparse relational topic model
(SRTM) which controls the sparsity via a sparsity-inducing
regularizer. Zhang et al. (2015) applied the STC model to
monitor temporal evolution of market competition. Above
models add sparsity regularizers to the objective function.
However, only making p(m|x) sparse may not efficiently
determine whether a mechanism should be selected for re-
sponding or not, comparing to directly selecting and setting
some p(m|x) to 0.

Conclusion and Future Work
In this study, we proposed an additional filter component to
the encoder-diverter-decoder structure, aiming to explicitly
train a conversational model over large set of mechanisms
and explicitly model which mechanisms are suitable for a
given input post. We empirically demonstrate that the pro-
posed model can generate more acceptable and diverse re-
sponses comparing to the baseline methods. It also offers
possibility to automatically learn and control response lan-
guage style in future work.

The work reported in this paper can be regarded as a part
of a larger blueprint: developing techniques for end-to-end
generative model, such as dialog system, image captioning
and other applications. For data set which implicitly contains
1-to-n mapping relations, we suggest injecting ERM into the
conventional models to boost their performances. This will
be the focus of our future work in this area.
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